
Last saved: 8/6/2008 Simon Morris/JavaFX in Action 1

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 2

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

MEAP Edition
Manning Early Access Program

Copyright 2008 Manning Publications

For more information on this and other Manning titles go to

www.manning.com

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 3

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

Table of Contents

1. Welcome to the future: introducing JavaFX

2. JavaFX script part 1: Data

3. JavaFX UI: The quickest GUI you've ever coded (?)

4. Painting pictures: impressive graphics, modest code

5. Hex, files, and video tape: getting serious with GUI fun

6. Is there anyone out there? Connecting to a Web Service

7. Going back to the Web: from application to applet

8. Going mobile: escaping the desktop

9. The best of both worlds: mixing JavaFX and Java

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 4

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

1
Welcome to the future: introducing

JavaFX

Graphics programming used to be fun!
Early personal computer software sported predominantly character based user interfaces.

Bitmap displays were too expensive, although some computers offered the luxury of
hardware sprites – for the programmer, the simple act of poking values into RAM gave
instant visual gratification.

These days things are a lot more complicated, we have layers of abstraction separating
us from the hardware. Sure, they give us the wonders of scrollbars, rich text editors and
tabbed panes, but they also constrain us. The World Wide Web raised the bar, users now
expect glossier visuals, yet the tools that we programmers use to create desktop software
are in essence little evolved from the days of the first Macintosh or Amiga.

The web also heralded a shift in the way we use our software. Increasingly data is
moving away from the hard disk and onto the internet. Our tools are also starting to move
that way, yet the fledgling attempts to build on-line applications using HTML and Ajax have
resulted in nothing more than pale imitations of their desktop cousins.

If only there was a purpose-built tool for writing the next generation of internet software,
one which could deliver the same rich functionality as a desktop application, yet with drop-
dead gorgeous visuals and rich media content within easy reach, delivered to whatever
device – PC or smart phone – we wanted to work from today.

Sounds too good to be true? Let me introduce you to JavaFX!
JavaFX is a family of complementary technologies for writing a new generation of internet

applications, spanning the desktop, the web, and mobile devices. These so-called Rich
Internet Applications have the power of desktop software, but the omnipresence of a web
page. Oh, and they offer eye-popping visuals too!

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 5

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

At the heart of JavaFX is JavaFX Script, an innovative, compiled, domain specific
language (DSL) for creating visually rich user interfaces. Unlike other languages, JavaFX
Script boasts a declarative syntax: the code structure mirrors the structure of the interface,
meaning associated UI pieces are kept in one efficient bundle, not strewn across multiple
locations. Meanwhile simple language constructs smooth the pain of updating and animating
the interface, reducing code complexity while increasing productivity.

The JavaFX platform, as its name suggests, sits atop the existing Java Standard and
Micro Editions, with current Java packages readily accessible from the JavaFX environment.
JavaFX specific libraries are also available for sophisticated presentation and animation,
taking advantage of JavaFX Script's unique language features.

In short: JavaFX makes user interface programming fun again!

1.1 Why do we need JavaFX?
A very good question – why do we need yet another language? The World is full of
programming language, wouldn't one of the existing language do? Perhaps JavaScript, or
Python, or what about Scala? Indeed, what's wrong with Java?

Certainly JavaFX makes writing slick graphical applications easier, but is there more to it
than that?

In a broader sense JavaFX attempts to respond to a change in the eco-system of user
facing software over the last twenty years, and particularly since the mid to late 1990s when
the World Wide Web began to rise in prominence. To understand why JavaFX is the answer
we would be well served to spell out precisely what the question is. Technology moves so
quickly and in so many different directions these days that it is vital we understand the exact
scope of the problem JFX is attempting to solve. So, let us first consider what makes the
JavaFX Script language special for graphics programming, then provide a little context by
examining the shifting trends in the software market since the arrival of the World Wide
Web, before finally rounding off by seeing how JavaFX addresses the problems of this new
environment.

1.1.1 If I had a hammer
"When the only tool you have is a hammer, every problem looks like a nail", the popular
saying goes.

Language advocacy is a popular pastime with many programmers, but what many fail to
realize, be they 'fanboys' of Java or C# or Python or COBOL (do we have any octogenarian
programmers reading?) is that programming languages are like tools: each is good at some
things, and next to useless at others.

Java, inspired as it was on prior art like C and Smalltalk, sports a solid general purpose
syntax which gets the job done with the minimum of fuss in the majority of cases.
Unfortunately there will always be those areas which, by their very nature, demand
something a little more specialized. Graphics programming has typically been one such

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 6

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

area, with pretty much every popular language developed over the decades struggling to
provide anything more than stodgy, cumbersome, support.

What makes graphics programming such an ill fit for modern programming languages?
I'm sure if we asked a dozen experts we'd get thirteen opinions, but let me (your humble
author) risk having a stab at defining a couple of likely candidate problems.

Figure 1.1 A complex GUI typical of modern desktop applications. Two windows host scrolling control
palettes, while another holds an editable image and rulers.

Firstly, graphics generally require quite large nested data structures: trees of elements,
each element providing a baffling array of configurable options and behaviors. Procedural
languages like to work in clearly delineated steps, but this linear pattern conflicts with the
tree pattern inherent in most GUIs.

Secondly, graphics code tends to rely heavily on concurrency – processes running in
parallel. Modern UI fashions have amplified this requirement, with several transition effects
often running within a single interface simultaneously. Unfortunately the heavy boilerplate
code demanded by many languages to spawn and manage new threads makes these kind of
animations cumbersome to construct.

Perhaps you can think of other problems, but the above two (at least in my experience)
seem to create more than enough trouble between them. In the next chapter, and
continuing throughout this book, we'll learn how JavaFX goes about defeating them.

But we've only considered part of the story – JavaFX isn't just about slick visuals, it's also
an important weapon in the arms race for the Rich Internet Application market. But what is

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 7

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

a Rich Internet Application, and why is it important? To answer those questions we need to
take a brief trip back in time.

1.1.2 Back to the future
Douglas Adams once wrote "I suppose the best way to find out where you come from is to
find out where you're going, and then work backwards."

The internet has become such a dominant cultural force, our grandchildren will likely
never believe us when we regale them with exotic tales of a life without a permanent
broadband connection. "But how did your computers ever work, Grandpa?"

In the pre-internet age software was installed straight onto the hard drive. If, at your
local bar, you were overcome by a sudden urge to share with a friend your latest poetic
masterpiece, you needed to hand both the poem file itself and the software to open it.
Chances are neither would be available.

Although your friend might be eternally grateful for this fact, clearly it was a problem
which needed a solution.

And a solution began to take form with the sudden explosion into the popular
consciousness of an exciting new technology with the remarkable bizarre name of “The World
Wide Web”. Initially allowing no interactivity between user and server beyond the clicking of
a hyper-link, the web rapidly evolved to accommodate the sending of basic form data with
each page request. This meant pages were no longer static, but could be dynamically
generated in response to parameters passed in by the visitor.

Initial web applications confined themselves to humble database lookups: what time is
the last bus?, who played the three wise monkeys in the movie Planet of the Apes?, which
pages have the words “Pamela”, “Anderson” and “pictures” on them? But bit by bit novel
ways were being found to utilize the simple query/response mechanism. It started
innocently enough with the likes of web based e-mail, then eventually spread to calendars,
personal photo galleries, word processor and spreadsheets. Pretty soon the web was awash
with clever new applications.

This marked a fundamental shift in the relationship between site and visitor. Previously
the site held content which the visitor browsed or queried; but now, with the advent of web
email and the like, the site provided no content itself but relied entirely on users to populate
it. The role of the site had moved from information source, to storage depot, and the role of
the visitor from passive consumer to active producer.

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 8

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

Figure 1.2 Wikipedia is an on-line encyclopedia constructed entirely by contributions from its users. The
“Edit this page” link above each article allows the reader to change, in real time, the page's content.

A new meme was emerging: the concept of User Generated Content. Sites would be
populated by the users themselves, millions of contributors pooling their resources to create
information resources on a spectacular scale. The poster child for this revolution was (and
still is, to a large extent) Wikipedia, the on-line encyclopedia in which all of the content is
provided by the readers.

Don't think the entry on "The Mighty Boosh" is up to scratch? Just click “EDIT” and
change it yourself! No longer would big organizations be able to shape and control
information – the inmates were taking over the asylum!

Some were horrified by the prospect – wouldn't this just create a jumble of untrustworthy
information from millions of unqualified contributors? – while others began to revel at what
they saw as a true democratization of information. Sometime around 2004 publisher and
Open Source advocate Tim O'Reilly coined the term "Web 2.0" to address the phenomena,
and it quickly fell into use (and abuse) as a hot new buzz phrase.

The explosion in web based applications drove demand for more sophisticated user
interfaces. This new generation of site, which attempted to ape the look and feel of
traditional desktop software, became blessed with the moniker "Rich Internet Application"
after Macromedia (subsequently purchased by Adobe) coined the term in a 2002 white paper
noting the transition of applications from the desktop onto the web, and asking how they
might be improved (unsurprisingly the answer involved Macromedia products.)

But despite all the enthusiasm, real progress was slow and frustrating. While the likes of
Ajax helped paper over some of the cracks, at its heart the web was designed to show
content, not run software. Web content is 'poured' into the window, left to right down the
page echoing the technology's publishing origins, while input is predominantly restricted to

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 9

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

basic form components. Mimicking the look and functionality of a powerful application-
centric technology inside a document-centric environment was not easy, as numerous web
developers soon discovered. Yet still they tried...

Figure 1.3 Google Docs runs inside a browser and has a much simpler GUI than Microsoft Office or
OpenOffice.org, even struggling to render a simple Word file correctly.

At the bleeding edges of the software development world some programmers dared to
commit heresy; they asked whether the web browser was really the best platform for
creating Rich Internet Applications?

They looked back to see where they had come from, and saw a wealth of elegant desktop
software with high fidelity user interfaces and sophisticated user interactivity. But this
software was written using the old desktop toolkits which bound themselves firmly to their
OS. Not only would software written using the Mac UI libraries fail miserably on Windows
(and vice-versa) but the desktop libraries themselves were written back in an age when all
software was run from a local disk – huge monolithic beasts which occupied dozens
(sometimes hundreds) of megabytes of disk space.

The web had none of these problems, and that is precisely why it had flourished. Web
applications were nimble, yet they lacked any capacity for sophistication.

If only there was a middle way, uniting the power of the desktop UI with the nimbleness
and visual impact of the web! If only desktop applications could behave like they lived on
the web! If only the web, the desktop and the mobile spaces could come together under one
unified UI technology! And so the heretics began to cast about for a solution...

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 10

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

1.1.3 Form follows function
From its first release in 1996 Java had featured a powerful technology for deploying rich
applications within a web page. So called Java Applets could be placed on any page, just like
an image, and ran inside a secure environment which prevented unauthorized tampering
with the underlying computer or operating system. While applets boosted the visibility of the
Java brand, the idea initially met with mixed success. The applet was a hard-core
programming technology in a world dominated by artists and designers, and while many
page authors drooled over Java's power, few understood how to install one onto their own
site, let alone how to create an applet from scratch.

Figure 1.4 An applet (the game 3D-Blox) runs inside a web page, living along side other web content like
text and images.

Java's main rival in the applet space was Macromedia Flash, an animation and
presentation tool which boasted a considerably more designer-friendly development
experience. Once Macromedia's plugin entered the ring the writing was on the wall for Java
applets, and they were quickly defeated by a knockout to leave Flash as the undisputed
World (Wide Web) champion. But by then focus of the Java community was already
elsewhere; Java had secured an audience on the server side, where it powered blue-chip
web sites, and in the mobile market, where it powered phone games and applications. And
so applets were forgotten, receiving little or no attention in the updates which followed Java's
debut release.

And this is where they might have languished, had the web not taken a collaborative
path...

Ten years on (thereabouts) from the death of the applet, and the buzz was once again
about on-line applications. Not Java applets this time, but the new breed of Rich Internet
Applications which many saw as holding much promise. Yet RIAs were finding it hard to

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 11

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

deliver an experience comparable to the desktop, and it wasn't immediately apparent from
where a solution might come. Certainly Ajax and HTML were struggling to provide the kind
of refined user interaction many now wanted, and Flash's strengths lay more in animation
than solid, traditional, 'functional' GUIs and data manipulation.

Was Java about to be given a second chance?
Java had already proved itself as an effective software platform away from the desktop,

amassing many followers in the software community and a vast archive of third party
libraries in the process. Yet Java still had one major handicap – as far as the desktop was
concerned it remained a tool for cola swigging, black t-shirt wearing, code junkies, not
trendy cappuccino sipping, goatee stroking, artists. If Java was to be the answer to the RIA
dilemma it needed to be less techie and more sympathetic of UI design and aesthetics.

In 2005 Sun Microsystems had acquired a company known as SeeBeyond Technology
Corporation, and in the process picked up a talented software engineer by the name of Chris
Oliver. Oliver's experimental F3 programming language (Form Follows Function) sought to
make GUI programming easier by designing the language around the specific needs of user
interface programming. As they pondered how best to exploit the emerging Rich Internet
App market, the folks at Sun could surely not have failed to note the potential of combining
the existing Java platform and Chris Oliver's new graphics power tool. And so in 2007, at the
JavaOne Conference (the community's most important annual gathering), F3 was given
center stage as Java's beachhead into the new Rich Internet Application market.

And as if to demonstrate its importance, F3 was blessed with a sexy new name:
"JavaFX"!

Figure 1.5 The StudioMoto demo, one of the original JavaFX examples, shows off a glossy user interface
with animation, movement and rotating elements all responding to the user's interaction.

JavaFX would marry the power of the network-centric Java platform with an efficient
graphics-centric language, creating the perfect environment for both programmer and
designer to push their skills to the limits on the desktop, the web and on smart phones.

At least, that's the plan...

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 12

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

1.2 JavaFX and the Java platform
JavaFX is not Java, but it rests in a sea of tools and technologies designed and created to
support Java. As such it shares the unusual dualistic characteristic of being of Java the
platform but not Java the language!

Given JavaFX's intentions it's a reasonable expectation to assume a minority of readers
may have been drawn to it (and thereby this book) without first having come through Java.
They would no doubt benefit from a little scene setting, explaining Java and placing it in
context. Meanwhile Java-savy readers will no doubt be keen to hear how the new language
and the familiar platform cooperate. So, for wet behind the ears novices we'll take a terse
look at the Java platform, and for the salty old Java sea dogs we'll examine how JavaFX fits
into the existing Java environment.

1.2.1 How not to go native
The Java is a software platform which seeks to fulfill the mantra "write once, run anywhere".
Software is compiled to bytecode files in the form of machine code instructions runnable on a
virtual machine called a JVM (Java Virtual Machine). The virtual machine provides a layer of
abstraction, allowing the program to be run on many devices without needing to be
specifically compiled to the machine code of the underlying hardware.

Figure 1.6 From compile-time to run-time: the life cycle of a typical Java application.

Once the source code files are compiled into bytecode class files they can be bundled into
a single archive known as a Jar (Java ARchive) for easy distribution. Jars can contain
runnable applications, or support libraries. There are numerous ways of getting the software
onto the end-user computer, from the traditional (ship it on a CD-ROM) to the modern
(embed it in a web page.)

Java
Sour
ce

Byteco
de

Class

C il A hi B'cod
e

Class
Files

Jar

PC
JRE

Mac
JRE

Linux
JRE

Hal
9000

JRE

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 13

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

1.2.2 Three editions, two audiences
There are three main Java markets: Standard Edition targets regular desktop users, Micro
Edition is an extension to the Standard Edition adding tools and libraries for small devices
like cell phones, and Enterprise Edition enhances the Standard Edition for writing web
applications and web services.

JavaFX targets both the Standard and Micro editions. (While applets are a web
technology, they actually run on the client side. This is why they're part of the Standard
Edition, not the Enterprise Edition.)

There exist two basic audiences for Java: the regular user who merely wants to run the
software, and the programmer who wants to create the software. These are personified by
the Java Runtime Environment, and the Java Development Kit. The former has the tools
necessary to run a Java program and is often shipped pre-installed on desktop computers,
while the latter bolsters the JRE with extra tools to create and debug Java software.

JavaFX has its own compiler, and therefore it is theoretically possible to develop JFX
software without installing a JDK. However the JDK contains more than just a Java language
compiler – it also includes support tools for creating and signing code archives (Jars),
profiling your code, and much more. Unless you like writing code with one arm tied behind
your back you're strongly recommended to install a full JDK.

1.2.3 A rose by any other name
Now the confusing part for anyone new to Java: release names. Since 1995 Java has been
through many revisions. In the beginning it was simple; the first commonly used version of
Java was 1.02, which was succeeded by 1.1 shortly thereafter. Someone then apparently
decided 1.2 didn't sound important enough, so 'Java' acquired the nom-de-plume 'Java2'.
Thus we got Java2 Standard Edition version 1.2, more commonly written as J2SE v1.2. This
schizophrenic naming convention continued until version 1.5, when it was replaced by a new
schizophrenic naming convention; 'Java2' reverted to 'Java' once more, and 1.5 became 5.0,
however due to technical issues the 1.5 label continued to be used in some places.

(It is left as an exercise for the reader to guess what medication the people who came up
with the above may have been on.)

Java SE 6 Update 10 (or later) is the version of the Java platform currently recommended
for writing and running JavaFX software. The tenth update overhauls the applet plugin
mechanics and provides a much smoother way to get Java onto the end user's machine –
both of which are greatly beneficial to JFX. At the time of writing Update 10 is in early
access beta only; by the time you read this book it should have made it to a full release.

1.3 Sneak peek: "Hello JavaFX!"
So far we've discussed what JavaFX is, why it's needed, and how it fits into the current Java
environment. We've yet to see a single line of JFX code. So let's remedy that by porting an
old friend to JavaFX Script:

import javafx.ext.swing.*;
import javafx.scene.*;

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 14

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

Frame
{ title: "Hello World JavaFX"
 content: Label
 { text: "Hello World!"
 font: Font { size: 30 }
 horizontalAlignment:
 HorizontalAlignment.CENTER
 verticalAlignment:
 VerticalAlignment.CENTER
 }
 width: 400
 height: 100
 visible: true
}

The above is a simple JavaFX Script program. Don't panic if you don't understand it yet,
it's merely there as an appetizer to give a taste of how JavaFX Script code looks. The
program opens a new frame on the desktop with "Hello World JavaFX" in the title bar, and
the legend "Hello World!" as the window contents. Perhaps your untrained eye can already
decipher a few clues as to how it works?

import javax.swing.*;
class HelloWorldJava
{ public static void main(String[] args)
 { Runnable r = new Runnable()
 { public void run()
 { JLabel l = new JLabel("Hello World!",JLabel.CENTER);
 l.setFont(l.getFont().deriveFont(30f));
 JFrame f = new JFrame("Hello World Java");
 f.getContentPane().add(l);
 f.setSize(400,100);
 f.setVisible(true);
 }
 };
 SwingUtilities.invokeLater(r);
 }
}

By way of a comparison the Java equivalent is presented below. It certainly looks busier,
although the truth is it's been stripped back to a bare minimum, almost to the point of being
crude.The Java version is typical of how GUIs are programmed under popular languages like
Java, C++, or BASIC. The frame and the label holding the "Hello World" legend are
constructed and combined in separate discrete steps. The order of these steps does not
necessarily tally with the structure of the user interface they build; above, the label is
created before its parent frame is created, but added after.

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 15

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

Figure 1.7 Separated at birth... “Hello World!” as a JavaFX and Java application.

As the scale of the GUI increases Java's verbose syntax and disjointed structure
(compared to the structure of the GUI) quickly becomes a handful. JavaFX Script, a bit like
the Energizer Bunny, can keep on going for far longer thanks to its declarative syntax.

1.4 How do I get what I need?
By now, hopefully, you're just about excited enough to want to dive in and start creating
your own software. But you need to know what to install first. Fortunately everything you
need is free, and readily available for download off of the internet.

1.4.1 The essentials
This section contains web addresses to software you need to get started. The next section
houses links for software, such as the phone toolkits, which you will need if you want to
follow the some of the later projects, plus optional extras like Integrated Development
Environments.

For each piece of software read the licenses (if any) and requirements carefully, and
follow the download and installation instructions.

Existing Java programmers will only need to install the JavaFX SDK itself, assuming
you're current Java Development Kit is up to date, plus an optional IDE plugin if required.
Non-Java programmers are recommended to install the latest JDK first (as well as an IDE if
desired) then install the JavaFX SDK.

http://java.sun.com/javase/downloads/index.jsp (Java SE Downloads)

I'd like the page URLs/titles to stand apart from the text so they're
more 'browse-able'. Ideally fixed width font for URLs, reducing
likelihood of transcription errors.

Firstly you need to visit the Java Standard Edition downloads page to fetch and install a
copy of the Java SE JDK, if you don't already have the latest version. Sun provides SE

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 16

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

implementations for Microsoft Windows and Linux, including 64 bit builds. You're
recommended to get a Java 6 (or later) JDK, with Update 10 (or later) favored due to a
radical enhancement of the platform mechanics regarding applet deployment and start up
times.

http://developer.apple.com/java/ (Java)

The above is the equivalent home page for Apple's Mac OS X Java JDK and JRE
implementations.

https://openjfx.dev.java.net/ (OpenJFX Home)
http://openjfx.java.sun.com/ (JavaFX Build Server)

It should come as no surprise you'll also need to download and install the JavaFX
Software Developers Kit. This provides the extra JFX components, such as the compiler, for
creating JavaFX software to target the Java SE platform. The first URL above is the home
page of the OpenJFX project, which is the Open Source initiative (sponsored by Sun
Microsystems) to create and distribute a JavaFX SDK. The second URL leads directly to a
menu of links for downloads, documentation, and examples. From here you can get the
latest stable and weekly builds of the OpenJFX project.

1.4.2 The extras
The above URLs are essential, while the following are either optional, or not needed until we
cover more advanced topics later in the book.

http://java.sun.com/javame/downloads/index.jsp (Java ME Downloads)

In later chapters, when we cover phone applications, you will need to install an add-on to

Java SE which includes the tools and APIs for addressing mobile devices. The Java Wireless
Toolkit (WTK) is available from Sun for Microsoft Windows and Linux.

http://code.google.com/android/ (Android)

Google has a rival platform for creating mobile software called Android, which is also Java
based (although it does not use standard Java bytecode.) If you want to try running your
mobile JavaFX applications on a Google phone you should consider downloading the Google
Android SDK.

http://www.netbeans.org/ (Welcome to NetNeans)
http://www.eclipse.org/ (Eclipes.org home)

You may want to download an Integrated Development Environment, if you don't have
one already. NetBeans amd Eclipse are popular free IDEs for Java, although others are
available. IDEs are optional – you may instead opt to work with a regular text editor and the
command line tools. This book does not favor one method of working over another.

Last saved: 8/6/2008 Simon Morris/JavaFX in Action 17

©Manning Publications Co. Please post comments or corrections to the Author Online forum:
http://www.manning-sandbox.com/forum.jspa?forumID=498

http://developers.sun.com/downloads/
(Sun Microsystems - Sun Developer Network (SDN))

Various other official APIs and Java tools can be found at the Sun Java site. You won't
need them for this book, but you may want to experiment with some of them in your own
projects. The above page is a handy menu giving quick access to noteworthy tools and APIs.

http://java.sun.com/
(Developer Resources for Java Technology)
http://www.java.net/
(java.net - THe Source for Java Technology Collaboration)

Finally, the above addresses are the Sun Microsystems Java site and the Java
community's official Open Source project site. These URLs should prove useful if any of the
previous addresses transform themselves into a cursed "404 Not found" (as sub page s have
wont to do over time.)

1.5 Summary
So, you know all about JavaFX now, why it was created, what it can do, how it fits into the
Java platform, and how to get your mitts on the stuff you need to write your own cool JFX
apps! What are we waiting for? Let's dive in and start writing coding!

In the next chapter we'll take a whistle stop tour through the JavaFX Script language –
it's really quite simple – and in subsequent chapters we'll start making some real mini
applications to demonstrate the power of JavaFX.

Are you excited? I certainly hope so! Then let the fun begin...

	1 Welcome to the future: introducing JavaFX
	1.1 Why do we need JavaFX?
	1.1.1 If I had a hammer
	1.1.2 Back to the future
	1.1.3 Form follows function

	1.2 JavaFX and the Java platform
	1.2.1 How not to go native
	1.2.2 Three editions, two audiences
	1.2.3 A rose by any other name

	1.3 Sneak peek: "Hello JavaFX!"
	1.4 How do I get what I need?
	1.4.1 The essentials
	1.4.2 The extras

	1.5 Summary

	2 JavaFX Script, part 1: data
	2.1 Comments
	2.2 Basic data types
	2.2.1 Static, not dynamic types
	2.2.2 Basic type declaration (var, Boolean, Integer, Number, String)
	2.2.3 Arithmetic on basic types (+, -, etc.)
	2.2.4 Logic operators (and, or, <, >, =, etc.)
	2.2.5 Casts (as)

	2.3 Strings
	2.3.1 String literals and embedded expressions
	2.3.2 String formatting

	2.4 Time literals
	2.5 Sequences (arrays)
	2.5.1 Basic sequence declaration and access
	2.5.2 Sequence creation using ranges ([..], step, etc.)
	2.5.3 Sequence creation using slices ([..<] , etc.)
	2.5.4 Sequence creation using a predicate
	2.5.5 Sequence manipulation (insert, delete and reverse)

	2.6 Binding
	2.6.1 Binding to variables (let and bind)
	2.6.2 Binding to bound variables
	2.6.3 Binding to a sequence element
	2.6.4 Binding to an entire sequence
	2.6.5 Binding to code
	2.6.6 The mechanics behind bindings

	2.7 Quoted identifiers
	2.8 Summary

