
27

Introducing AspectJ

In chapter 1, we focused on general concepts in AOP. With those behind us, we can
now look at one specific AOP implementation: AspectJ. AspectJ is an aspect-
oriented extension to the Java programming language. Like any AOP implementa-
tion, AspectJ consists of two parts: the language specification, which defines the
grammar and semantics of the language; and the language implementation, which
includes weavers that take various forms such as a compiler and a linker. A weaver
produces byte code that conforms to the Java byte-code specification, allowing any
compliant Java virtual machine (VM) to execute those class files. The language
implementation also offers support for integrated development environments
(IDEs), to simplify building and debugging applications.

 AspectJ started and initially grew as a special language that extends the Java lan-
guage with new keywords. It also provided a special compiler that could understand
those extensions. But recently, a lot has changed in its form as a language, as well as

This chapter covers
■ Writing an AspectJ “Hello, world!” application
■ Becoming familiar with the AspectJ language
■ Weaving mechanisms
■ Integrating with Spring

Licensed to Manning Marketing <stho@manning.com>

28 CHAPTER 2 Introducing AspectJ

in the weaver. First, AspectJ offers an alternative syntax based on the Java annotation facil-
ity to express crosscutting constructs. This lets you use a plain Java compiler instead of
the special compiler. Second, AspectJ offers new options for weaving classes with aspects.
Finally, it has gained a strong foothold in the Spring Framework with several integration
options. All these changes have made adoption of AspectJ easier than ever before.

 In this chapter, we’ll examine important facets of AspectJ—starting with language
constructs, passing through syntax and weaving choices, peeking into the Spring inte-
gration, and ending with tools support—from a high-level perspective. In the chapters
that follow, we’ll delve deeper into each of these facets.

2.1 Writing your first AspectJ program
You’ll begin your journey by writing a simple application. This code introduces a few
AspectJ concepts and gives you a feel for the language.

2.1.1 Setting up the example

Let’s create a regular Java class, as shown in listing 2.1, which contains two methods
that will print messages. Later in this section, you’ll create a few aspects to introduce
additional behavior without modifying the class.

package ajia.messaging;

public class MessageCommunicator {
 public void deliver(String message) {
 System.out.println(message);
 }

 public void deliver(String person, String message) {
 System.out.println(person + ", " + message);
 }
}

The MessageCommunicator class has two methods: one to deliver a general message
and the other to deliver a message to a specific person. Next, let’s write a simple class
to exercise the functionality of the MessageCommunicator class, as shown in listing 2.2.

Listing 2.1 Class encapsulating the message-delivery functionality

Installing AspectJ
You’ll need to install AspectJ to work with the code in this book. Doing so is easy:

1 Download the AspectJ distribution from http://www.eclipse.org/aspectj/
downloads.php.

2 Run java –jar <path-to-downloaded-file>. Doing so opens a wizard
that will guide you through the installation process. When the wizard finishes,
you’ll have the AspectJ compiler and other tools, various AspectJ libraries
(such as aspectjrt.jar and aspectjweaver.jar), and documentation.

Alternatively, you can use Eclipse along with the AspectJ Development Tools (AJDT)
to run these examples in the IDE. See section 2.7.1 for details.

Licensed to Manning Marketing <stho@manning.com>

http://www.eclipse.org/aspectj/downloads.php
http://www.eclipse.org/aspectj/downloads.php

29Writing your first AspectJ program

package ajia.main;

import ajia.messaging. MessageCommunicator;

public class Main {
 public static void main(String[] args) {
 MessageCommunicator messageCommunicator
 = new MessageCommunicator();
 messageCommunicator.deliver("Wanna learn AspectJ?");
 messageCommunicator.deliver("Harry", "having fun?");
 }
}

When you compile the MessageCommunicator and the Main class together using the
AspectJ compiler (ajc) and run the Main program, the output is as follows (Com-
mands shown in this chapter are for Windows; please change them appropriately for
your platform.):

> ajc ajia\messaging\MessageCommunicator.java ajia\main\Main.java
> java ajia.main.Main
Wanna learn AspectJ?
Harry, having fun?

Every valid Java program is a valid AspectJ program. Therefore, you could use the
AspectJ compiler (ajc) to compile the classes instead of a Java compiler such as javac.

 Now that the basic setup is ready, let’s add a few aspects to the system to improve
the message-delivery functionality.

2.1.2 Adding an aspect

Consider authentication functionality: before delivering a message, you’d like to
check whether the user has been authenticated. Without using AOP, you’d have to
write code like the following:

public class MessageCommunicator {
 private Authenticator authenticator = new Authenticator();

 public void deliver(String message) {
 authenticator.authenticate();
 System.out.println(message);
 }

Listing 2.2 Class to exercise the message-delivery functionality

Running the examples
The main reason behind showing the command-line operations is to remove some
of the mystery about how AspectJ works. The downloadable sources include shell
scripts that match the commands and also include the necessary setup. But most
developers will prefer to run the code through the Ant and Maven scripts also pro-
vided with the downloadable sources. See appendixes B and C for detailed instruc-
tions on how to use these tools with AspectJ.

Licensed to Manning Marketing <stho@manning.com>

30 CHAPTER 2 Introducing AspectJ

 public void deliver(String person, String message) {
 authenticator.authenticate();
 System.out.println(person + ", " + message);
 }
}

You have to add a call to authenticate() in each method that needs authentica-
tion, which leads to code tangling. Similar code must be present in all classes that
require the authentication functionality—leading to code scattering. With AOP, you
can do better.

 Without changing a single line of code in the MessageCommunicator class from
listing 2.1, you can enhance its functionality by adding an aspect to the system. List-
ing 2.3 shows the traditional syntax. Later, you’ll see alternative syntax to implement
the same functionality.

package ajia.security;

import ajia.messaging.MessageCommunicator;

public aspect SecurityAspect {
 private Authenticator authenticator = new Authenticator();

 pointcut secureAccess()
 : execution(* MessageCommunicator.deliver(..));

 before() : secureAccess() {
 System.out.println("Checking and authenticating user");
 authenticator.authenticate();
 }
}

The Authenticator class asks for credentials (username and password) when the
authenticate() method is called for the first time in a thread. Upon successful
authentication, it stores the user in a thread local so it doesn’t ask for credentials in
the same thread again. Upon failure, it throws a runtime exception. (I don’t show the
Authenticator here, for brevity’s sake. If you like, you can download it from the
book’s web site: http://manning.com/laddad2/.)

 Compile the classes along with the aspect. Now, when you run the program, you
see the following output (the use of Java generic feature in the Authenticator class
requires specifying the -source 5 option to ajc):

> ajc -source 5 ajia\messaging\MessageCommunicator.java

➥ ajia\main\Main.java

➥ ajia\security\SecurityAspect.aj ajia\security*.java
> java ajia.main.Main
Checking and authenticating user
Username: ajia
Password: ajia
Wanna learn AspectJ?
Checking and authenticating user
Harry, having fun?

Listing 2.3 Aspect to secure access

Aspect
declaration

B

Pointcut
declaration

C

AdviceD

Licensed to Manning Marketing <stho@manning.com>

http://manning.com/laddad2/

31AspectJ crosscutting construct

The SecurityAspect.aj file declares the SecurityAspect aspect. Note that you could
have declared the aspect in SecurityAspect.java file, because AspectJ accepts both .aj
and .java extensions for input source files. Although the file extension doesn’t matter
to the compiler, aspects typically use the .aj extension, and Java code uses the .java
extension. Let’s looks at the listing in more detail:

An aspect is a unit of modularization in AOP, much like a class is a unit of modulariza-
tion in OOP. The declaration of an aspect is similar to a class declaration.

A pointcut selects interesting points of execution in a system, called join points. The
aspect defines a pointcut secureAccess() that selects execution of all the methods
named deliver() in the MessageCommunicator class. The * indicates that the point-
cut matches any return type, and the .. inside parentheses after deliver specifies
that it matches regardless of the number of arguments or their types. In this example,
the pointcut selects execution of both overloaded versions of deliver() in the
MessageCommunicator class. You’ll learn about join points and pointcuts in detail in
the next chapter.

An advice defines the code to execute upon reaching join points selected by the asso-
ciated pointcut. Here, you define a piece of advice to execute before reaching the join
points selected by the secureAccess() pointcut. The before() part indicates that the
advice should run prior to the execution of the advised join point—in this case, prior
to executing any MessageCommunicator.deliver() method. In the advice, you
authenticate the current user. With the aspect now present in the system, each time
MessageCommunicator.deliver() is executed, the advice code performs the authenti-
cation logic before the method.

 Now that you have the flavor of the AspectJ language, it’s time for an overview of
the language and its core building blocks.

2.2 AspectJ crosscutting construct
Recall the generic AOP model discussed in chapter 1. AspectJ is the most complete
implementation of that model, supporting all its elements. In this section, we’ll exam-
ine how AspectJ maps each model element into program constructs. Note that
AspectJ offers two syntax choices: traditional and @AspectJ. This section uses the tra-
ditional syntax to study these building blocks. We’ll examine the @AspectJ syntax in
section 2.3.

 We can classify the crosscutting constructs in the AOP model as common crosscut-
ting constructs (join point, pointcut, and aspect), dynamic crosscutting construct
(advice), and static crosscutting constructs (inter-type declarations and weave-time
declarations). These constructs form the building blocks of AspectJ. Let’s study the
common crosscutting constructs first.

2.2.1 Common crosscutting constructs

AspectJ supports a few common constructs consisting of the join point, the pointcut,
and the aspect. You can use these constructs with both dynamic and static crosscutting.

B

C

D

Licensed to Manning Marketing <stho@manning.com>

32 CHAPTER 2 Introducing AspectJ

JOIN POINT

In AOP, and therefore in AspectJ, join points are the places where the crosscutting
actions take place. Listing 2.1 has join points corresponding to the execution of the
deliver() methods as well as calls to the println() method on the System.out object.
Listing 2.2 has join points corresponding to the creation of MessageCommunicator and
calls to the deliver() methods.

 After you identify join points useful for a crosscutting functionality, you need to
select them using the pointcut construct.
POINTCUT

A pointcut is a program construct that selects join points and collects context at those
points. For example, a pointcut can select a join point that is an execution of a
method. It can also collect the join-point context, such as the this object and the
arguments to the method.

 The following pointcut selects the execution of any public method in the system:

execution(public * *.*(..))

The wildcards * and .. indicate that the pointcut selects regardless of the return type,
declaring type, method name, and method parameters. Here, the only condition
specified is that the access specification for the method must be public.

 It’s a good idea to name a pointcut so that other programming elements can use it
(and so that programmers—including yourself—can understand the intention behind
the pointcut). For example, you can name the earlier pointcut publicOperation,
as follows:

pointcut publicOperation() : execution(public * *.*(..));

ASPECT

The aspect is the central unit in AspectJ, in the same way that a class is the central unit
in Java. It contains the code that expresses the weaving rules for both dynamic and
static crosscutting. Additionally, aspects can contain data, methods, and nested class
members, just like a normal Java class. Let’s define an aspect that performs profiling
that you’ll update as you learn about more elements:

package ajia.profile;

public aspect ProfilingAspect {
}

Learning about common crosscutting constructs will pay off when you begin using
them with dynamic and static crosscutting constructs. Let’s see how, starting with the
dynamic crosscutting construct.

2.2.2 Dynamic crosscutting construct: advice

AspectJ’s dynamic crosscutting support comes in the form of advice. Advice is the code
executed at a join point selected by a pointcut. Advice can execute before, after, or
around the join point. The body of advice is much like a method body—it encapsu-
lates the logic to be executed upon reaching a join point.

Licensed to Manning Marketing <stho@manning.com>

http://www.eclipse.org/ajdt/downloads
http://www.jroller.com/ramlog/entry/using_the_aspectj_plug_in1
http://www.jroller.com/ramlog/entry/using_the_aspectj_plug_in1
http://intellij.expertsystems.se/aspectj.html

33AspectJ crosscutting construct

 Using the publicOperation() pointcut from the previous section, you can advise all
public methods of MessageCommunicator to profile them. Let’s update Profilin-
gAspect (shown in listing 2.4) with profiling advice.

package ajia.profile;

public aspect ProfilingAspect {
 pointcut publicOperation() : execution(public * *.*(..));

 Object around() : publicOperation() {
 long start = System.nanoTime();
 Object ret = proceed();
 long end = System.nanoTime();
 System.out.println(thisJoinPointStaticPart.getSignature()
 + " took " + (end-start) + " nanoseconds");
 return ret;
 }
}

The advice records the start time, calls proceed() to continue executing the advised
method, records the end time, and prints the time taken by the method execution.
The thisJoinPointStaticPart variable is one of the three variables available in each
advice that carry information about the currently advised join point, such as the
method name, the this object, and method arguments.

 When you compile this aspect along with the other code and execute it, you get
the following output:

> ajc -source 5 ajia\messaging\MessageCommunicator.java ajia\main\Main.java

➥ ajia\security\SecurityAspect.aj ajia\security*.java
➥ ajia\profile\ProfilingAspect.aj
> java ajia.main.Main
Checking and authenticating user
boolean ajia.security.Authenticator.isAuthenticated() took 840051

➥ nanoseconds
Username: ajia
Password: ajia
String[] ajia.security.Authenticator.getUserNamePassword() took 5248473759

➥ nanoseconds
void ajia.security.Authenticator.authenticate() took 5250886077 nanoseconds
Wanna learn AspectJ?
void ajia.messaging.MessageCommunicator.deliver(String) took 5252761734

➥ nanoseconds
Checking and authenticating user
boolean ajia.security.Authenticator.isAuthenticated() took 5028 nanoseconds
void ajia.security.Authenticator.authenticate() took 61740 nanoseconds
Harry, having fun?
void ajia.messaging.MessageCommunicator.deliver(String, String) took 307581

➥ nanoseconds
void ajia.main.Main.main(String[]) took 5253861315 nanoseconds

While dynamic crosscutting alters the program behavior, static crosscutting alters the
programs structure. Let’s see AspectJ’s support for it.

Listing 2.4 Profiling all public methods

Licensed to Manning Marketing <stho@manning.com>

34 CHAPTER 2 Introducing AspectJ

2.2.3 Static crosscutting constructs

Static crosscutting comes in the form of inter-type and weave-time declarations.
INTER-TYPE DECLARATION

The inter-type declaration (ITD) (also referred to as introduction) is a static crosscutting
construct that alters the static structure of the classes, interfaces, and aspects in the
system. For example, you can add a method or field to a class, or declare a type to
implement an interface. In an ITD, one type (an aspect) declares the structure for the
other types (classes, interfaces, and even aspects)—hence the name.

 The following statement makes the weaver assign the AccessTracked interface as
the parent of the MessageCommunicator class:

declare parents: MessageCommunicator implements AccessTracked;

When this declaration is woven in, it has the same effect as declaring the MessageCom-
municator class as follows:

public class MessageCommunicator implements AccessTracked {
 ...
}

Another form of ITD—member introduction—offers a way to add new methods and fields
to other types. The following declaration adds the lastAccessedTime field and the
updateLastAccessedTime() and getLastAccessedTime() methods to the Access-
Tracked type:

private long AccessTracked.lastAccessedTime;

public void AccessTracked.updateLastAccessedTime() {
 lastAccessedTime = System.currentTimeMillis();
}

public long AccessTracked.getLastAccessedTime() {
 return lastAccessedTime;
}

You can then advise methods in a type that implements AccessTracked (directly or
through a declare parents statement) to update the last-accessed time, as shown in
the following snippet:

before(AccessTracked accessTracked)
 : execution(* AccessTracked+.*(..))

Pseudo keywords in AspectJ
The proceed and other keywords such as aspect, pointcut, and before are really
pseudo keywords that gain special meaning only in the right context. For example, it
is perfectly legitimate to use a method named ‘proceed’ in Java classes. But when
proceed is used in an around advice, it acquires a special meaning. This use of
pseudo keywords enables AspectJ to work with any valid Java program that may al-
ready include AspectJ keywords.

Licensed to Manning Marketing <stho@manning.com>

35AspectJ crosscutting construct

 && !execution(* AccessTracked.*(..))
 && this(accessTracked){
 accessTracked.updateLastAccessedTime();
}

This code advises all methods of types that implement the AccessTracked interface
(the + wildcard denotes subtypes) but not the method in AccessTracked (such as the
introduced updateLastAccessedTime() method). The this() pointcut collects the
tracked object so you can call the updateLastAccessedTime() method on it.

 Let’s put all these snippets in an aspect, as shown in listing 2.5, to see their effect.

package ajia.track;

import ajia.messaging.MessageCommunicator;

public aspect TrackingAspect {
 declare parents: MessageCommunicator implements AccessTracked;

 private long AccessTracked.lastAccessedTime;

 public void AccessTracked.updateLastAccessedTime() {
 lastAccessedTime = System.currentTimeMillis();
 }

 public long AccessTracked.getLastAccessedTime() {
 return lastAccessedTime;
 }

 before(AccessTracked accessTracked)
 : execution(* AccessTracked+.*(..))
 && !execution(* AccessTracked.*(..))
 && this(accessTracked) {
 accessTracked.updateLastAccessedTime();
 }

 private static interface AccessTracked {
 }
}

To see the effect, modify the Main class to print the last-accessed time for the message-
Communicator object, as shown in listing 2.6.

package ajia.main;

...

public class Main {
 public static void main(String[] args) {
 ...

 System.out.println("Last accessed time for messageCommunicator "
 + messageCommunicator.getLastAccessedTime());
 }
}

Listing 2.5 Tracking the last-accessed time using an aspect

Listing 2.6 Modified Main class to print the last-accessed time

Licensed to Manning Marketing <stho@manning.com>

36 CHAPTER 2 Introducing AspectJ

When you compile and execute this class, the output is as follows:

> ajc -source 5 ajia\messaging\MessageCommunicator.java ajia\main\Main.java

➥ ajia\security\SecurityAspect.aj ajia\security*.java
➥ ajia\profile\ProfilingAspect.aj ajia\track\TrackingAspect.aj
> java ajia.main.Main
...
Last accessed time for messageCommunicator 1250040714984
...

ITDs also offer a way to annotate program elements and deal with checked exceptions
in a systematic manner, but we’ll defer that discussion until chapter 5.

 An important form of static crosscutting allows detecting and flagging the pres-
ence of join points, matching a pointcut during compilation. Let’s see how.
WEAVE-TIME DECLARATION

The weave-time declaration is another static crosscutting construct that allows you to add
weave-time warnings and errors when detecting certain usage patterns. Often, weaving
is performed during compilation; therefore, these warnings and errors are issued
when you compile the classes.

 Consider SecurityAspect from listing 2.3. With this aspect in place, you might
want to warn about direct calls to the Authenticator.authenticate() method. The
following declaration will cause the compiler to issue a warning if any part of the sys-
tem calls the prohibited method—except, of course, SecurityAspect:

declare warning
 : call(void Authenticator.authenticate()) && !within(SecurityAspect)
 : "Authentication should be performed only by SecurityAspect";

Note the use of the call() pointcut to select a method call (as opposed to selecting
the method execution, which is always in the Authenticator class) and !within() to
restrict selection of join points to only those occurring outside SecurityAspect. The
weaver will report warnings when it detects the specified conditions along with other
compile-time warnings such as use of a deprecated method.

 Let’s see this in action by modifying SecurityAspect to add this declaration:

package ajia.security;

public aspect SecurityAspect {

 ...

 declare warning
 : call(void Authenticator.authenticate())
 && !within(SecurityAspect)
 : "Authentication should be performed only by SecurityAspect";
}

You also modify the Main class to add new Authenticator().authenticate() (and
the associated import statements) to test a violation. When you compile the code, the
output is as follows:

> ajc –source 5 ajia\messaging\MessageCommunicator.java ajia\main\Main.java

➥ ajia\security\SecurityAspect.aj ajia\security*.java
...\ajia\main\Main.java:13 [warning]

Licensed to Manning Marketing <stho@manning.com>

37AspectJ alternative syntax

➥ Authentication should be performed only by SecurityAspect
new Authenticator().authenticate();
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 method-call(void ajia.security.Authenticator.authenticate())
 see also: ...\ajia\security\SecurityAspect.aj:15::0

As the output shows, the compiler detects and flags the violation and also points to the
aspect with the corresponding declare warning statement.

 This completes our discussion of various crosscutting constructs in AspectJ. By
offering comprehensive support for various elements, AspectJ enables modularization
of crosscutting concerns. You’ll see examples based on these constructs throughout
the book.

 Until now, we’ve restricted ourselves only to the traditional AspectJ syntax and
compiler as the weaver. But AspectJ offers an alternative syntax that we’ll study next.
Later in this chapter, we’ll examine alternative weaving models.

2.3 AspectJ alternative syntax
The traditional syntax we’ve been using so far requires the use of the special ajc com-
piler early in the development process to compile aspects. This poses a potential bar-
rier to adopting AspectJ. To simplify adoption, starting with AspectJ version 5,
alternative syntax and weaving models are available, thanks to the merger of AspectJ
with AspectWerkz, another implementation of AOP for Java.

 The alternative @AspectJ syntax extends the language using the new annotation
facility in Java 5. The main advantage of this syntax style is that you can compile your
code using a plain Java compiler (for example, javac). As a result, the code works bet-
ter with conventional Java IDEs and tools that don’t understand the traditional AspectJ
syntax. Furthermore, the proxy-based AOP framework in Spring uses this syntax, sim-
plifying adoption of AspectJ if the project is already using Spring. The disadvantage of
@AspectJ syntax is its verbosity in expressing the same constructs and its limitations in
expressing certain constructs, especially in the static crosscutting category.

 Let’s create an @AspectJ version of the aspect from listing 2.3, as shown in listing 2.7.

package ajia.security;

import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class SecurityAspect {
 private Authenticator authenticator = new Authenticator();

 @Pointcut(
 "execution(* ajia.messaging.MessageCommunicator.deliver(..))")
 public void secureAccess() {}

 @Before("secureAccess()")
 public void secure() {

Listing 2.7 Introducing security using the @AspectJ syntax

Aspect declarationB

AdviceD
Pointcut

declaration
C

Licensed to Manning Marketing <stho@manning.com>

38 CHAPTER 2 Introducing AspectJ

 System.out.println("Checking and authenticating user");
 authenticator.authenticate();
 }
}

Following are the differences between listings 2.3 and 2.7:

Instead of using the aspect keyword, you use a class annotated with an @Aspect anno-
tation. The ajc compiler, which understands the semantics associated with the
@Aspect annotation, uses this information to treat the class as if it’s an aspect.

Similarly, the @Pointcut annotation marks an empty method as a pointcut. You must
specify the pointcut expression—the same expression as in the version using the tradi-
tional syntax (except for the use of the fully-qualified type name for ajia.messag-
ing.MessageCommunicator). The name of the method serves as the pointcut name.

The @Before annotation marks a regular method as a before advice. The body of the
method consists of the advice logic—this code is executed when a matching join point
is executed.

First, let’s compile the code using javac and execute the resulting code. Note that
annotations such as @Aspect, @Pointcut, and @Before are contained in aspectjrt.jar
and must be on your classpath regardless of whether you compile the aspects with ajc
or javac:

> javac ajia\messaging\MessageCommunicator.java

➥ ajia\security\SecurityAspect.java ajia\security\Authenticator.java
➥ ajia\security\AuthenticationException.java ajia\main\Main.java
> java ajia.main.Main
Wanna learn AspectJ?
Harry, having fun?

The code compiled fine, but the aspect had no effect on the output. This may not sur-
prise you; after all, javac has no idea of the meaning of annotations such as @Aspect
and @Pointcut. In general, javac is aware of only a few standard annotations (such as
@Override and @SuppressWarnings). You need to include an aspect weaver some-
where between compiling the source code and executing the byte code in the VM.
The simplest way to use the @AspectJ syntax is to use the ajc compiler instead of javac.
Alternatives include binary weaving, where code compiled using javac is then woven
using ajc; and load-time weaving (LTW), where classes are woven as they’re being
loaded into the VM. We’ll discuss these alternatives in the next section.

 Now, let’s compile the same sources using ajc:

> ajc -source 5 ajia\messaging\MessageCommunicator.java

➥ ajia\security\SecurityAspect.java ajia\security\Authenticator.java
➥ ajia\security\AuthenticationException.java ajia\main\Main.java
> java ajia.main.Main
Checking and authenticating user
Username: ajia
Password: ajia
Wanna learn AspectJ?
Checking and authenticating user
Harry, having fun?

AdviceD

B

C

D

Licensed to Manning Marketing <stho@manning.com>

39Weaving mechanisms

The output is the same as that produced by the aspect in listing 2.3. (Note the
-source 5 option to allow Java 5 constructs such as annotations.)

 The value proposition of @AspectJ syntax is a simplified adoption curve. The
aspect’s syntax is expressed using Java constructs, which reduces the mental block
commonly associated with using yet another language. You’re still using plain Java! In
addition, tools such as compilers, IDEs, and code-coverage utilities work more easily
with the @AspectJ syntax, because they’re working with plain Java code.

 So far, we’ve focused on the AspectJ syntax. Now, let’s look at another puzzle piece
that completes AspectJ: the weaver.

2.4 Weaving mechanisms
A weaver needs to weave together classes and aspects so that advice gets executed,
inter-type declarations affect the static structure, and weave-time declarations produce
warnings and errors. AspectJ offers three weaving models:

■ Source weaving
■ Binary weaving
■ Load-time weaving

Regardless of the weaving model used, the resulting execution of the system is identi-
cal. The weaving mechanism is also orthogonal to the AspectJ syntax used; any combi-
nation of weaving mechanism and AspectJ syntax will produce identical results. In this
section, we’ll examine the weaving models offered by AspectJ. We’ll revisit this topic in
chapter 8.

2.4.1 Source weaving

In source weaving, the weaver is part of the compiler (all the examples in this chapter
so far have used source code weaving). The input to the weaver consists of classes and
aspects in source-code form. You can write the aspects in either the traditional syntax
or the @AspectJ syntax.

 The weaver, which works in a manner similar to a compiler, processes the source
and produces woven byte code. The byte code produced by the compiler is compliant
with the Java byte-code specification, which any standard compliant VM can execute.

 Essentially, when used in this manner, ajc replaces javac. But note that unlike javac,
ajc requires that all sources be presented together if you want woven byte code. If you
present sources separately, the resulting byte code can be used as input for binary
weaving or load-time weaving, discussed next.

2.4.2 Binary weaving

In binary weaving, input to the weaver—classes and aspects—is in byte-code form. The
input byte code is compiled separately using the Java compiler or the AspectJ com-
piler. For example, you can use jar files or class files produced using the Java compiler.

 Let’s see binary weaving in action in a step-by-step manner. The goal is to compile
classes and aspects without weaving and then weave the resulting binary (.class) files.

Licensed to Manning Marketing <stho@manning.com>

40 CHAPTER 2 Introducing AspectJ

STEP 1: COMPILING THE JAVA SOURCES

Compile the code from listings 2.1 and 2.2 using javac. You could use ajc; but to illus-
trate the effect of binary weaving clearly, we’re staying away from ajc. Use the –d
option to specify the destination directory for the classes, to help you better under-
stand the effect:

> javac –d classes ajia\messaging\MessageCommunicator.java

➥ ajia\security\Authenticator.java ajia\security\AuthenticationException.java

➥ ajia\main\Main.java

Unsurprisingly, executing the Main class shows that there is no effect of the aspect:

> java –classpath classes ajia.main.Main
Wanna learn AspectJ?
Harry, having fun?

STEP 2: COMPILING THE ASPECT

Next, compile the @AspectJ-styled aspect from listing 2.7, directing its output to a dif-
ferent directory:

> javac –d aspects ajia\security\SecurityAspect.java

If you wanted to use the traditional aspect from listing 2.3, you’d have to compile it
using ajc:

> ajc –d aspects ajia\security\SecurityAspect.aj

Executing the Main class shows that the output still doesn’t have any effect on the
aspect:

> java –classpath classes;aspects ajia.main.Main
Wanna learn AspectJ?
Harry, having fun?

STEP 3: WEAVING THE ASPECT

To weave aspects into classes in binary form, you use binary weaving:

> ajc –inpath classes;aspects –aspectpath aspects –d woven

The –inpath option specifies the path to the classes that are weaving targets. Because
you used javac to compile the aspects, you must also pass those to –inpath so that ajc
can add the necessary support methods. The -aspectpath option specifies the path to
the aspects to be woven in.

Binary weaver and linker
If you’re familiar with languages such as C and C++, think of the weaver as a linker,
which is a more accurate comparison. Much the same way a linker takes object
files or libraries compiled using a compiler as input to produce an executable or an-
other library, the weaver takes files containing byte code as input and produces wo-
ven byte code.

Licensed to Manning Marketing <stho@manning.com>

41Weaving mechanisms

 Executing the Main class shows that you’ve restored security to the system. Because
you pass an explicit –classpath option, you must add the CLASSPATH you’ve set to
make the AspectJ runtime available to the VM:

> java –classpath woven;%CLASSPATH% ajia.main.Main
Checking and authenticating user
Username: ajia
Password: ajia
Wanna learn AspectJ?
Checking and authenticating user
Harry, having fun?

Binary weaving can also take a combination of source and byte-code form as input
(classes or aspects). For example, you may have classes compiled into a jar file and
aspects available in source form.

 An extension of binary weaver is load-time weaving.

2.4.3 Load-time weaving

A load-time weaver takes input in the form of binary classes and aspects, as well as
aspects and configuration defined in XML format. A load-time agent can take many
forms: a Java VM Tools Interface (JVMTI) agent, a classloader, or a VM- and applica-
tion server–specific class preprocessor, which weaves the classes as they’re loaded into
the VM.

 Let’s use LTW to weave in the SecurityAspect, starting with the output of the first
two steps in the previous section. LTW needs an XML file that specifies the weaving
configuration. AspectJ supports a few locations for such a file; you’ll use one of them
by naming the file aop.xml and placing it in a directory named META-INF in a class-
path component. Listing 2.8 shows the minimal XML file that serves this purpose.

<aspectj>
 <aspects>
 <aspect name="ajia.security.SecurityAspect"/>
 </aspects>
</aspectj>

This configuration instructs the weaver to weave in the SecurityAspect. As you’ll see
later in chapter 8, aop.xml can include a lot more configuration information, includ-
ing pointcut definitions.

 You enable LTW by including the –javaagent option when starting the VM:

> java –classpath classes;aspects

➥ -javaagent:%ASPECTJ_HOME%\lib\aspectjweaver.jar ajia.main.Main
Checking and authenticating user
Username: ajia
Password: ajia
Wanna learn AspectJ?
Checking and authenticating user
Harry, having fun?

Listing 2.8 aop.xml file specifying the configuration for LTW

Licensed to Manning Marketing <stho@manning.com>

42 CHAPTER 2 Introducing AspectJ

The –javaagent option specifies that the aspectjweaver.jar file that comes as part of
the AspectJ distribution should be used as the JVMTI agent. The weaver uses the infor-
mation in the aop.xml file in listing 2.8 and weaves the aspects specified in the
<aspects> section into classes as they’re being loaded into the VM.

 By now, you must be wondering how AspectJ performs its magic. In the next sec-
tion, we’ll take a quick look at how the source files are compiled into the byte code.

2.5 AspectJ weaving: under the hood
Because the byte code produced by the AspectJ weaver must run on any compliant
Java VM, it must adhere to the Java byte-code specification. This means the weaver
must map crosscutting elements to Java constructs. In this section, we’ll outline how
the different elements in an AspectJ program map to pure Java byte code. Note that
the discussion that follows presents a simplified view of AspectJ code transformation
into pure Java byte code.

 Here are the typical ways the AspectJ weaver maps various crosscutting elements to
pure Java:

■ Aspects map to classes, with each data member and method becoming the
members of the class representing the aspect.

■ Pointcuts are intermediate elements that map to methods. They may have asso-
ciated auxiliary methods to help perform matching at runtime.

■ Advice usually maps to one or more methods. The weaver inserts calls to these
methods at potential locations matching the associated pointcut.

■ Inter-type declarations of fields and methods are added directly to target classes.
■ Weave-time warnings and errors have no real effect on byte code (they’re stored

in a binary form so that they can be applied through binary weaving). They cause
the compiler to print warnings or abort compilation when there’s an error.

Each mapped element carries annotations that help the weaver use the crosscutting
information, even for aspects presented to it in byte code form. The annotations also
help bring symmetry to the @AspectJ syntax discussed in section 2.3.

Thinking about language semantics in terms of transformed code helps
take the mystery out of AspectJ. It also makes you appreciate the hard
work the AspectJ weaver performs—and the hard work you no longer
need to perform! But such thinking can bog you down in the details of
the transformed code. A better approach is to begin thinking in terms of
language semantics instead of implementation.

Spring-driven LTW
Spring 2.5 introduces Spring-driven LTW, an alternative way to configure AspectJ
LTW for Spring applications. With it, for certain application and web servers, you
can avoid modifying the launch script (required to specify the –javaagent option);
instead, you modify the application context to express the desire to use LTW, and
Spring handles the rest. We’ll examine this weaving option in chapter 9.

WARNING

Licensed to Manning Marketing <stho@manning.com>

43AspectJ weaving: under the hood

In light of this information, let’s see how aspects and classes look after passing through
the AspectJ weaver. Note that the weaver produces byte code and not Java code, as
shown here. We’re showing you this code only to give you an idea of the source code
that is roughly equivalent to the byte code produced.

2.5.1 The compiled aspect

First, let’s examine the code in a class that is equivalent to SecurityAspect from list-
ing 2.3:

package ajia.security;

@Aspect
public class SecurityAspect {
 private Authenticator authenticator = new Authenticator();

 public static final SecurityAspect ajc$perSingletonInstance;

 @Pointcut(
 "execution(* ajia.messaging.MessageCommunicator.deliver(..))")
 void ajc$pointcut$$secureAccess$76() {}

 @Before("secureAccess()")
 public final void ajc$before$ajia_SecurityAspect1e248afa3() {
 System.out.println("Checking and authenticating user");
 authenticator.authenticate();
 }

 static {
 SecurityAspect.ajc$perSingletonInstance = new SecurityAspect();
 }

 ... method aspectOf() and hasAspect() (discussed in chapter 6) ...
 ... aspect initialization code ...
}

SecurityAspect is mapped to a class of the same name. By default, an aspect is a sin-
gleton, and users don’t instantiate it explicitly. The static block in the aspect ensures that
the singleton aspect instance is created as soon as the SecurityAspect class is loaded
into the system—typically, during the execution of code that refers to the aspect. The
pointcut is mapped to the ajc$pointcut$$secureAccess$76() element. The before
advice is mapped to the ajc$before$ajia_SecurityAspect1e248afa3() method,
whose body is identical to the advice body. Notice the annotations on the methods; they
make the code identical to that produced by compiling an equivalent @AspectJ aspect.
The AspectJ weaver weaves calls to these methods into the advised code, as you’ll see next.

2.5.2 The woven class

Now, let’s see the equivalent code for the MessageCommunicator class (from listing 2.1),
after it has been woven with SecurityAspect:

package ajia.messaging;

import ajia.security.SecurityAspect;

public class MessageCommunicator {
 public void deliver(String message) {

Licensed to Manning Marketing <stho@manning.com>

44 CHAPTER 2 Introducing AspectJ

 SecurityAspect.aspectInstance.
 ajc$before$ajia_SecurityAspect1e248afa3();
 System.out.println(message);
 }

 public void deliver(String person, String message) {
 SecurityAspect.aspectInstance.
 ajc$before$ajia_SecurityAspect1e248afa3();
 System.out.print(person + ", " + message);
 }
}

Recall that the deliverMessage() pointcut in SecurityAspect is defined to select
both of the overloaded deliver() methods in MessageCommunicator. Accordingly,
the ajc$before$ajia_SecurityAspect1e248afa3() call on the aspect instance
SecurityAspect.aspectInstance is made from both methods.

We have examined how AspectJ operates under the hood. Now, let’s look at a different
weaving possibility. The Spring Framework, starting with version 2.0, offers integration
with @AspectJ, but without using the AspectJ weaver you’ve seen so far.

2.6 Spring AspectJ integration
Spring, the most widely used lightweight framework for developing enterprise applica-
tions, offers its own form of AOP to modularize crosscutting concerns typically seen in
enterprise applications. It uses the proxy design pattern to intercept the execution of
methods on the target object. Due to the use of proxies, it exposes method execution
join points only for objects created by the Spring container (commonly known as
Spring beans). But it is a pragmatic solution for its target applications.

 Starting with version 2.0, Spring offers several options to leverage AspectJ’s power
in an incremental manner. For example, it lets you use AspectJ pointcut expressions

Performance implications of AspectJ weaving
“How does it affect the performance of woven code?” is perhaps the most commonly
asked question about AspectJ. The inquiring mind wants to know how a hand-woven
implementation of crosscutting functionality compares with that implemented with
AspectJ.

The code produced by the weaver answers this question well. Because the weaver
encapsulates the advice in a method and calls it from appropriate places, there is
virtually no overhead from the AspectJ weaver. Furthermore, because advice is well
isolated in one place, you can easily add optimizations to that code—something
you’d cringe at implementing in hundreds of places.

If you’re looking for more details about weaving and its performance implications,
read “Advice Weaving in AspectJ” by Erik Hilsdale and Jim Hugunin (http://
hugunin.net/papers/aosd-2004-cameraReady.pdf).

Licensed to Manning Marketing <stho@manning.com>

http://hugunin.net/papers/aosd-2004-cameraReady.pdf
http://hugunin.net/papers/aosd-2004-cameraReady.pdf

45Spring AspectJ integration

in addition to its own pointcut expressions. In this section, we’ll preview Spring
AspectJ integration for aspects written in @AspectJ syntax. This will be helpful to you
because you’ll see many Spring-based examples in the book.

 Let’s continue to use the MessageCommunicator class from listing 2.1 and the
annotation-style aspect from listing 2.7. First, you’ll write a minimum application
context file to define the needed configuration (see listing 2.9). Please read the
Spring Framework documentation for details of the syntax of the application configu-
ration file.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd">
 <aop:aspectj-autoproxy/>

 <bean id="messageCommunicator"
 class="ajia.messaging.MessageCommunicator"/>

 <bean id="securityAspect" class="ajia.security.SecurityAspect"/>
</beans>

The <aop:aspectj-autoproxy> element tells Spring to automatically create proxies
for the beans that can be advised by aspects (which are declared as beans as in D).

The <bean> element creates a bean for the MessageCommunicator class.

The <bean> element creates a bean corresponding to the aspect declared using the
@AspectJ syntax.

Next, you modify the Main class from listing 2.2 to create the application context and
obtain the messageCommunicator bean from it. Then, you use the bean to deliver a
few messages (see listing 2.10).

package ajia.main;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import ajia.messaging.MessageCommunicator;

public class Main {
 public static void main(String[] args) {
 ApplicationContext context
 = new ClassPathXmlApplicationContext("applicationContext.xml");
 MessageCommunicator messageCommunicator
 = (MessageCommunicator)context.getBean("messageCommunicator");

Listing 2.9 Defining the application context (applicationContext.xml)

Listing 2.10 Using the Spring container application context

Instructing
automatic

proxy creation

B

Declaring
regular bean

C

DDeclaring aspect bean

B

C

D

Licensed to Manning Marketing <stho@manning.com>

46 CHAPTER 2 Introducing AspectJ

 messageCommunicator.deliver("Wanna learn AspectJ?");
 messageCommunicator.deliver("Harry", "having fun?");
 }
}

Now, let’s compile all these classes and execute the Main class:

> javac ajia\messaging*.java ajia\main*.java ajia\security*.java
> java ajia.main.Main
Checking and authenticating user
Username: ajia
Password: ajia
Wanna learn AspectJ?
Checking and authenticating user
Harry, having fun?

You see the same output as when you use an AspectJ weaver. Behind the scenes, the
Spring container creates a proxy around the messageCommunicator bean and inter-
cepts methods called on it according to the SecurityAspect defined using the
@AspectJ syntax. As a result, you can use the aspects written using @AspectJ in a Spring
application without needing the AspectJ weaver. We’ll examine the details in chapter 9.

 So far in this chapter, you’ve used only command-line tools to work with aspects.
But in real life, virtually no one works without a good IDE. You also need support for
documentation so the crosscutting information is available outside the IDE. In the
next section, we’ll look at the logistical support provided by AspectJ.

2.7 AspectJ logistics overview
AspectJ offers a complete set of tools ranging from a compiler to IDE support. We’ve
already examined the compiler and load-time weaver. Let’s look at a few important
tools in more detail. This will help you when you download the book’s source code
and try out the examples.

2.7.1 IDE integration

IDE support offers an integrated approach to editing, compiling, executing, and
debugging tasks. AspectJ eases the development process by providing integration with
Eclipse. The integration with the IDE is achieved through the AspectJ Development
Tools (AJDT) plug-in. Using this integration, you can edit, compile, and debug your
project the same way you would a project written in Java.

TIP AJDT offers plug-ins for various versions of Eclipse. You can download an
appropriate version from http://www.eclipse.org/ajdt/downloads. Bet-
ter still, you can use the free SpringSource Tools Suite (STS), which is an
Eclipse distribution that includes many useful plugins, including AJDT,
targeted for developing Spring-based applications.

Figure 2.1 shows how the example in this chapter looks in the Eclipse IDE. Note that
the Spring IDE, an Eclipse plug-in for developing Spring-based applications, offers
similar functionality for Spring AspectJ integration, as discussed in section 2.6.

Licensed to Manning Marketing <stho@manning.com>

http://www.eclipse.org/ajdt/downloads

47AspectJ logistics overview

NOTE AspectJ itself uses AspectJ for its implementation. And AJDT uses AspectJ
to weave into Eclipse’s Java Development Tools (JDT), to offer AspectJ
integration.

In figure 2.1, Eclipse shows the standard views, along with a Cross References view that
shows how an advice applies to different parts of the code. This view helps in diagnos-
ing problems where advice doesn’t apply to the expected set of methods. If you see
any mismatch, you can modify the corresponding pointcuts and reexamine the list of
the advised methods.

 The AJDT plug-in also offers a way to visualize the big picture effects of crosscutting
concerns using the Visualiser.

Figure 2.1 Developing applications using Eclipse-AspectJ integration (using STS distribution). The
overall feel for editing, building, and debugging is like a plain Java project. The IDE also shows how
crosscutting elements affect the various parts of the system.

What about other IDEs?
Earlier versions of AspectJ supported other IDEs besides Eclipse—NetBeans,
JBuilder, and Java Development Environment for Emacs (JDEE)—by offering open
source plug-ins for each of them. But those plug-ins haven’t been kept up to date.
(An effort is currently under way to revive the NetBeans plug-in. See http://
www.jroller.com/ramlog/entry/using_the_aspectj_plug_in1 for details.)

Licensed to Manning Marketing <stho@manning.com>

http://www.jroller.com/ramlog/entry/using_the_aspectj_plug_in1
http://www.jroller.com/ramlog/entry/using_the_aspectj_plug_in1

48 CHAPTER 2 Introducing AspectJ

Although Eclipse IDE integration shows crosscutting information in a crosscutting ref-
erences view, you’ll often need the same information in a static document.

2.7.2 AspectJ documentation tool

The AspectJ documentation tool—ajdoc—extends Javadoc to provide crosscutting
information in static form. You invoke ajdoc in a way similar to Javadoc:

> ajdoc –source 5 ajia\messaging*.java ajia\main*.java ajia\security*.aj

➥ ajia\security*.java ajia\profile*.aj ajia\track*.aj

It produces HTML files similar to the ones produced by Javadoc, except the ele-
ments carry additional information showing how aspects and classes interact (see fig-
ure 2.2).

 The output produced by ajdoc offers a simple way to examine the crosscut-
ting structure without needing an IDE. Because ajdoc isn’t tied to a specific IDE,
you can use it alongside the IDE of your choice even if it doesn’t support AspectJ
directly.

 The tools offered by AspectJ are indispensable during the development process. If
you haven’t already done so, download and install AspectJ and AJDT as well as this
book’s source code.

What about other IDEs? (continued)
This is perhaps a reflection of the market reality—no other IDE is as popular as
Eclipse.

One IDE that has a good market and mind share is IntelliJ IDEA. Although an AspectJ
plug-in is available for it (http://intellij.expertsystems.se/aspectj.html), it works only
with the @AspectJ syntax.

Note that for any IDE without direct support for AspectJ, the possibility of using the
@AspectJ syntax makes the lack of direct AspectJ support a less pronounced issue.
Because the code is still plain Java, as far as the IDE is concerned, you can edit code,
take advantage of code completion, and so on. If the IDE allows you to replace the
default compiler, you can replace it with ajc. If not, you can introduce a post-compila-
tion step (often supported in IDEs) to run ajc to perform binary weaving. Debugging
works fine too, because the method representing advice is still executed as if there
was a real call.

When you use the @AspectJ syntax in an IDE that doesn’t support AspectJ directly,
you lose the source-code markers that indicate advice applicability, along with the
crosscutting references view. You can alleviate this problem to an extent by using
ajbrowser (which comes as a part of the AspectJ distribution)—a standalone tool
that shows how weaving rules affect different parts of a program.

Licensed to Manning Marketing <stho@manning.com>

http://intellij.expertsystems.se/aspectj.html

49Summary

2.8 Summary
AspectJ adds AOP constructs—pointcuts, advice, aspects, inter-type declarations, and
weave-time declarations—to Java, creating a powerful language that facilitates modu-
larizing crosscutting concerns while retaining the benefits of Java, such as platform
independency. You can add new functionality without changing code in the core mod-
ules and without those modules being aware of what you’ve done.

 Aspect-oriented programming in AspectJ is simple: choose where you want to
crosscut, choose the kind of action you need to perform, and programmatically spec-
ify both of them. The AspectJ language exposes the necessary join points in a Java pro-
gram. Pointcuts let you choose the join points you want to affect, and advice allows
you to specify the action at those join points. The static crosscutting mechanism
enables you to modify the static structure of the system. AspectJ complements—and

Figure 2.2 Output produced by ajdoc, which works similarly to Javadoc. In addition to the regular
documentation, it provides markers to show crosscutting information.

Licensed to Manning Marketing <stho@manning.com>

50 CHAPTER 2 Introducing AspectJ

doesn’t compete with—Java. By utilizing its power to modularize the crosscutting con-
cerns, Java programmers no longer need to recode multiple modules when imple-
menting or changing a crosscutting concern.

 The new additions to AspectJ—the various syntax options, weaving models, and
integration with Spring—make adopting AspectJ much easier. It’s typical for Spring
developers to start with the Spring AspectJ integration, using proxy-based weaving,
and to learn the power of AOP and AspectJ through experience. Then, they often
move to advanced AOP techniques using AspectJ weaving, often along with the
@AspectJ syntax. At this point, load-time weaving is often a common choice due to its
simplicity in getting started. Later, when they’re looking for even more advanced
usages, they may go for the traditional syntax along with a combination of source,
binary, and load-time weaving.

 In this chapter, we studied the core AspectJ concepts from 20,000 feet. It’s now
time to get a closer view. The next chapter introduces the join-point model that is at
the heart of AOP. The three chapters that follow will discuss dynamic crosscutting,
static crosscutting, and aspects. We’ll then proceed to examine the @AspectJ syntax,
weaving mechanisms, and Spring integration. All this information will enable you to
write aspects that are useful in complex Java applications, which we’ll explore in part 2
of the book.

Licensed to Manning Marketing <stho@manning.com>

